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Terahertz response of dipolar impurities in polar liquids:
On anomalous dielectric absorption of protein solutions
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A theory of radiation absorption by dielectric mixtures is presented. The coarse-grained formulation is based
on the wave-vector-dependent correlation functions of molecular dipoles of the host polar liquid and a density
structure factor of the solutes. A nonlinear dependence of the dielectric absorption coefficient on the solute
concentration is predicted and originates from the mutual polarization of the liquid surrounding the solutes by
the collective field of the solute dipoles aligned along the radiation field. The theory is applied to terahertz
absorption of hydrated saccharides and proteins. While the theory gives an excellent account of the observa-
tions for saccharides, without additional assumptions and fitting parameters, experimental absorption coeffi-
cient of protein solutions significantly exceeds theoretical calculations with dipole moment of the bare protein
assigned to the solute and shows a peak against the protein concentration. A substantial polarization of pro-
tein’s hydration shell, resulting in a net dipole moment, is required to explain the disagreement between theory
and experiment. When the correlation function of the total dipole moment of the protein with its hydration shell
from numerical simulations is used in the analytical model, an absorption peak, qualitatively similar to that
seen in experiment, is obtained. The existence and position of the peak are sensitive to the specifics of the
protein-protein interactions. Numerical testing of the theory requires the combination of dielectric and small-
angle scattering measurements. The calculations confirm that “elastic ferroelectric bag” of water shells ob-

served in previous numerical simulations is required to explain terahertz dielectric measurements.

DOI: 10.1103/PhysRevE.81.021914

I. INTRODUCTION

Dielectric spectroscopy of mixtures is a well-established
technique which requires theoretical modeling for the data
interpretation. The models of dielectric response of mixtures
traditionally operate by assuming that a mixture can be sepa-
rated into macroscopic dielectric bodies. Among the com-
monly used models are the Maxwell-Wagner theory [1] and
various formulations of the effective-medium approximation
[2]. Both assume that a dielectric constant can be assigned to
each component and the latter also requires that the physical
properties of the host and the impurity are not dramatically
different.

The recent rapid development of dielectric techniques to
study mixtures [3], in particular in the terahertz (THz) fre-
quency window [4], aims at a different length-scale. The
interest is mainly driven by the desire to learn about electro-
statics of nanoscale objects such as biopolymers [5-11],
nanocrystals [12], and nanoconfined fluids [13]. In particular,
one hopes that the properties of the nanoscale interface be-
tween the solvent and the solute can be effectively probed by
the dielectric response. This goal is complicated by the fact
that essentially any relaxation event linked to electrical di-
poles in the system contributes to the integral experimental
signal, and theory is required to separate different compo-
nents. While a fully atomistic model is the ultimate goal, it is
still useful to develop coarse-grained approaches employing
the length-scale intermediate between macroscopic dimen-
sions of classical theories [1,2] and a fully atomistic length
scale.
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This paper presents a coarse-grained model of the dielec-
tric response of dipolar mixtures, aiming in particular at the
THz frequency window. The model does not assume that
solutes can be described as dielectric bodies, neither does it
assume dielectric continuum for a polar solvent. The polar
liquid is characterized instead by its wave-vector-dependent
correlation functions [14] and a similar approach is invoked
for the solutes characterized by their density structure factor.
However, instead of using completely atomistic structures,
the solutes are modeled by effective spheres specified by
dipole moments, polarizabilities, effective radii, etc. The as-
sumption of solute sphericity does not pose a principal re-
striction on the theory since it can be extended to solutes of
nonspherical shapes made by overlapping van der Waals
spheres of the composing atoms [15]. However, this simpli-
fication allows us to come up with a set of compact analyti-
cal equations applicable to analyzing experimental data.

The theory is applied to the analysis of the absorption
coefficient of THz radiation. Recent measurements on hy-
drated saccharides [16] and proteins [17] have shown quali-
tatively different types of dependencies of THz dielectric ab-
sorption on concentrations of these two types of solutes.
While the absorption of sacharide solutions decays with in-
creasing solute concentration, the absorption of protein solu-
tions passes through a maximum. The current theory gives an
excellent account of the absorption measurements on saccha-
rides but fails to reproduce the protein experiments when the
dipole moment of the protein is assigned to the solute. It is
suggested that hydrated proteins introduce solvation electro-
statics qualitatively different from the dielectric response of
typical dipolar mixtures [18]. Specifically, hydration layers
nearest to the protein (~10-20 A in thickness) become po-
larized and thus carry a significant dipole moment with the
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FIG. 1. Schematic diagram of a conventional dielectric imped-
ance experiment. The electric field E (in the absence of dielectric)
is perpendicular to the plane of the liquid film such that the field in
the dielectric is Ey/e. This is a longitudinal field as it sets up the
direction of symmetry breaking in the homogeneous liquid. The
polarization of the cavity in the liquid induces the depolarization
field and the corresponding cavity dipole M,. aligned opposite to the
direction of the external field. The average solute dipole (m),
aligned along the external field, enhances the dielectric response,
but this effect is partially compensated by a concomitant enhance-
ment of the depolarization field of the empty cavity.

relaxation dynamics different from that of the protein [19].
This “elastic ferroelectric bag” [18] surrounding the protein
significantly enhances the effective dipole moment of the
solute observed on the large wavelength of THz radiation
and can account for the observed anomalies in the dielectric
absorption of protein solutions [17]. Since both the scenario
of the rigid protein dipole and the dipole dressed by the
ferroelectric bag of water molecules can be introduced into
the formalism, the present theory provides a tool to separate
this new physics from what can be described within the tra-
ditional understanding of dipolar liquids and solvation elec-
trostatics.

II. DIELECTRIC RESPONSE OF MIXTURES

We consider a polar liquid with dipolar impurities (sol-
utes). The impurities are larger than the molecules of the host
liquid in most cases of practical interest and can physically
be realized as molecules or small colloids (nanoparticles).
The physics of the problem is clearly presented by separating
the process of inserting the impurities into two steps: (i) the
creation of a hard-core cavity in the liquid and (ii) polariza-
tion of the host polar liquid by the partial charges of the
overall neutral solute. The restriction of the solute neutrality
can be lifted when ionic conductivity is not an issue such as
the case for many THz dielectric measurements.

The creation of a cavity in a polar liquid results, in terms
of standard dielectric theories [20,21], in a depolarization
field, i.e., charges on the cavity’s surface that create the cav-
ity dipole moment M, opposite to the direction of the exter-
nal field. In the standard setup of the dielectric spectroscopy
experiment shown in Fig. 1 the electric field is longitudinal,
i.e., parallel to the direction of breaking the isotropic
symmetry of the liquid by an external perturbation. The
dipole of a spherical cavity of volume (), is then [21]
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M, =-3PLQ),/(2€+1), where € is the dielectric constant of
the homogeneous liquid and P* is the longitudinal (super-
script “L”) polarization field created by the external source of
the electric field E,. Since P'=(e—1)Ey/(4me), the cavity
dipole decreases with increasing e. Standard low-frequency
(high €) dielectric measurements of polar liquids are there-
fore fairly insensitive to impurities.

The dipole moment of the solute orients itself in the ex-
ternal field and therefore enhances the dielectric response.
This effect is partially compensated by an additional polar-
ization of the cavity surface by the internal solute dipole
acting to enhance the cavity dipole M, in the direction op-
posite to the external field (Fig. 1). The solute dipoles can be
considered as independent in the limit of infinite dilution,
and the change in the dielectric response is linear in the
dipoles’ concentration. This approximation limits the range
of concentrations by the requirement that the Onsager radius
of the solute-solute dipolar interactions is below the average
distance between them.

The situation becomes more complex for a finite concen-
tration of solute dipoles when an additional effect of their
collective field gains in importance. The alignment of solute
dipoles in the external field creates a net average dipole mo-
ment {m,) (Fig. 1) and a corresponding nonzero net electric
field that can potentially polarize cavities and alter their cav-
ity dipoles. Since internal fields are commonly large com-
pared to the external field, this effect, nonlinear in the sol-
utes’ concentration, can potentially be significant.

The arguments presented so far apply to the standard di-
electric impedance measurements with longitudinal electric
fields. THz experiments employ a different geometry where
the absorption of a pulse of electromagnetic wave propagat-
ing orthogonally to a thin (~100 wum) film is measured
[6,7]. In this case, the electric field is transversal, i.e., it is
perpendicular to the direction of axial symmetry breaking
introduced in the isotropic liquid by the direction of the wave
vector [22,23]. One measures then the transverse dielectric
response and cavities are polarized differently. The dipole
moment of a cavity becomes M!=-P7(,X3e/(2e+1),
where the transverse polarization (superscript “T”) is
P"=(e—1)Ey/(4m). It is clear that the cavity dipole produced
in response to a transversal field is not screened by the high
dielectric constant of a polar liquid. Microwave absorption
measurements are therefore significantly more sensitive to
impurities than conventional dielectric measurements. The
distinction between the longitudinal and transverse polariza-
tion response in polar substances is the physical basis of the
sensitivity of transversal absorption experiments to electro-
statics of molecular or nanoscale solutes [4,24].

III. RESPONSE FUNCTION

We now turn our attention to a detailed analysis of the
transverse dielectric response of dipolar mixtures. In order to
approach this problem we will use the approximation of lin-
ear response of the solvent to the electric field of the solute.
The linear response approximation states that the solvent re-
sponse function is insensitive to the magnitude of the solute
electric field and in fact can be calculated for a fictitious
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solute with all partial charges turned off (zero dipole for a
dipolar solute) [15]. Even though the electrostatic response is
linear, the response to the solute repulsive core cannot be
calculated within linear models since the repulsive potential
produces a large and nonlinear perturbation of the solvent
structure. This perturbation renormalizes the spectrum of the
solvent fluctuations modifying the linear (Gaussian) response
function [25]. In dielectric theories, this modification is in-
cluded by imposing boundary conditions on the solution of
the Poisson equation. The problem becomes way more com-
plex at the molecular level and is commonly solved in terms
of angular-dependent distribution functions [26].

We will adopt here Chandler’s formulation of the Gauss-
ian model [25] in which the linear response function, modi-
fied by the presence of a solute, is sought by imposing the
condition of vanishing solvent density from the solute’s hard
core. In case of the polarization response, this condition im-
plies the polarization field P vanishing from the hard core of
the solute. One can then define a generating functional of the
polarization field as follows [14]:

GlEy] = f exp[- (BI2)P * x;' + P+ BE, + P]] | oP(r)]DP.

9
(1)

Here, E; is an external electric field, the asterisk denotes
both the volume integration and tensor contraction, and
B=1/(kgT) is the inverse temperature. Further, y, is the two-
rank tensor of the Gaussian fluctuations of the polarization
field in the homogeneous solvent and the product of delta
functions runs over all spatial coordinates r within solute’s
hardcore of volume (), and over all solutes (index i). This
term ensures that the polarization field vanishes from the
volume of each solute in the mixture.

Functional derivatives of G[E,] over the external field E,
produce correlation functions of the polarization field of the
solvent in the presence of the solutes. The Gaussian integral
over the polarization field P(r) can be calculated exactly,
resulting in a Gaussian functional in the external field E.
The corresponding renormalized response function ) gains
most compact representation in the inverted k space [14]. Tt
can be written in the k,w representation in the following
form:

XK1k, ) = X, (K, @) Sk, = 2 X (ki)

cekik)Tig (k) —ky) - xy(kp ). (2)

Here, 51(],k2=(277)36(k1—k2) and (k) is the Fourier trans-
form of the Heaviside (step) function defining the excluded
volume of the solutes considered here as stationary (no trans-
lational dynamics). The direct-space Heaviside function
0,(r) is equal to unity within the solute and is equal to zero
outside the solute. The inverted-space function in Eq. (2) is
given by the Fourier integral over the solute volume (),

6k)=| e*Tdr. (3)
Q
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The response function of the mixture x(k;,k,, w) depends
on two wave vectors k; and k, separately, instead of
k, -k, of the homogeneous liquid, because of the inhomoge-
neous response produced by each solute marked by index i.
This response function combines the response function of the
homogeneous liquid x,(k,w), the information about the sol-
ute shape incorporated into 6y(k), and the renormalized re-
sponse function x*(k,w) (see below).

The response function of an axially symmetric dipolar
liquid is expandable into longitudinal (L) and transverse (7)
projections [26,27]

X:(k,0) = X (k, )J* + x' (k,0)J", (4)

where JE=KKk and J7=1-KK are the orthogonal longitudinal
and transverse dyads. The k=0 values of the response pro-
jections are directly related to the frequency-dependent di-
electric constant of the host liquid,

477)(5(0,(0) =1-¢e(w)",

477)(3(0,(0) =elw) - 1. (5)

The entire k,w dependence of the projections x“7(k,w) is
given in [28], but only the transverse projection is required
for the problem considered here (see below).

The last function in Eq. (2) that requires definition is
x*(k,w). This function appears in the solution for the gen-
erating functional in Eq. (1) as a result of renormalizing the
dipolar response of the homogeneous liquid by the solute
cavity. It thus contains the information about both the solvent
and the solute [14,28]. Only k=0 transverse projection of this
function appears in the equations for the transverse response
of the dipolar mixture to a uniform electric field. It is given
by the following equation

3e(w)

T
T0,w) = 6
Y00 = (©)
We will now use Eq. (2) to calculate the transverse dipole
moment M’ (w) of the dielectric sample produced in response
to the electric field of the electromagnetic radiation oscillat-

ing with frequency w

Eo(r) = é"Epe’". (7)

Here, the polarization unit vector €’ is perpendicular to the
direction of wave propagation k.

The dipole moment M”(w) combines two contributions:
the dipole induced directly by the external field of the radia-
tion (radiation wavelength is much larger than any molecular
scales in the system) and an additional collective polarization
induced by all solute dipoles aligned along the external field.
These two contributions are described by correspondingly
the first and the second summands in the following relation

MT(w) =6 x(0,0,0) - 6'E,
+é&7 x(0,k, ) * >, T(K)e™ - mg (w), (8)

where T(K) is the Fourier transform of the dipolar tensor
T=-V,V,|r—r'|"! and, as above, the asterisk combines in-
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tegration over k space with tensor contraction. In addition,
m;(w) is the solute’s dipole moment aligning along the os-
cillating external field.

The dipole moment my;(w) is a sum of two components:
the electronic dipole induced instantaneously (on the time
scales of interest) by the external filed and a permanent di-
pole inertially rotated by the torque imposed by the external
field. The inertial component can be calculated from the lin-
ear response approximation [26] with the result

é7 - my(w) = (ap, + af,[1 — io®(- @) f(@)Ey.  (9)

Here, ¢, is the solute electronic polarizability and the per-
manent (nuclear) dipolar polarizability is given as

ab, = (Bm/2)gf - (10)

In Eq. (10), gg,K is the transverse Kirkwood factor [29] of the
correlated orientations of the solute dipoles

g&K=<2[é,--é_,-—<é,~-12>(12~é,~>]>, (1)
J

and €; are the unit vectors of the solute dipoles. If di-
electric constant €, can be assigned to the solutes, then
60=1+27Tﬁm%p0g(7): x and py=N,y/V. We have also assumed
isotropic polarizability of the solute and, in addition, for so-
lution problems, the permanent dipole m, needs to be prop-
erly renormalized from the gas-phase value by the effect of
the solute polarizability [21,30,31]. Further, the factor f,(w)
in Eq. (9) is the Onsager directing field correction [21,30]
accounting for the difference between the electric field of the
radiation and the local electric field imposing torque on the
solute dipole.

The Laplace-Fourier transform ®(w) in Eq. (9) represents
rotational dynamics of the solute dipole

D(w) = (mogo )" f &' (mo()Mp(0)) - €"e™dr, (12)
0

where My=2m, ; is the total solute dipole in the sample. In
case of a single-time Debye rotational relaxation with the
relaxation time 7, the term in the square brackets in Eq. (9)
gains the form

l—iw®(- ) =(1+iwm) . (13)

The Debye approximation in Eq. (13) is typically suffi-
cient for rigid dipoles dissolved in a polar solvent. The situ-
ation potentially becomes more complex for soft nanoscale
solutes, biopolymers in the first place. The dynamics of the
dipole moment, and the form of ®(-w), are affected by both
the rigid-body rotations and by the low-frequency vibrations
of the solute [7]. As we discuss below, the inclusion of a
nonvanishing dipole moment of protein’s hydration shell,
with its own dynamics, makes the problem even more non-
trivial, further complicating the form of ®(-w).

The first term in Eq. (8) can be easily calculated by com-
bining Egs. (5) and (6) and noting that 6,(0)=, [Eq. (3)].
This calculation then results in a simple relation for the dif-
ference between the response function of the mixture
Xmix(@)=M"(0)/(VE;) and of the homogeneous liquid
drx(w)=€e(w)—1
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47Ax = - nof(w). (14)

Here, Ax=xmi(®w)—x(w), 170=Ny{dy/V is the volume frac-
tion of the solutes in the mixture with the overall volume V,
and

_3e(@)(e(@) - 1)

flw)= 2e(w) + 1 (15)

We note here that a more simple (and elegant) derivation
of the response function of a low-concentration mixture as
given by Egs. (14) and (15) can be found in Ref. [20]. Equa-
tions (14) and (15) also represent a low-concentration limit
of the Maxwell-Wagner formula [1]. Our microscopic con-
sideration is thus consistent with macroscopic arguments.
The microscopic description is however required to get cor-
rectly the second summand in Eq. (8) describing the collec-
tive response of an ensemble of solute dipoles. This is what
we consider next.

The response function of the solvent includes two parts
corresponding to two summands in Eq. (2). The first sum-
mand represents the response of the liquid to an infinitely
small solute which does not perturb the spectrum of dipolar
fluctuations of the liquid. The contribution of this part of the
response function to the transverse dipole moment of the
sample [Eq. (8)] is easy to calculate and its relative contri-
bution to the response is Ay(w)/ x(w)=yo(w)f(w). Here,

Yolw) = (471/3) poag . + (271/3) Bt xmipol 1 — iw®(~ w)]
(16)

is the dipolar density of solutes defined in analogy with a
similar quantity of homogeneous liquids [1].

The contribution from the second term in Eq. (2) to
MT"(w) comes as the correction of the solvent response intro-
duced by the excluded volume of the solute. This calculation
is more complex. After some algebra one arrives at the mix-
ture susceptibility relative to the susceptibility of the homo-
geneous liquid,

3
Ax(@)/x(@) = %%
3e(w
+yo(w)fd(w)<1 - ﬁl(w, ﬂo,R)).
(17)

The only nontrivial part in this equation is the integral
I(w, 79,R) arising from the combined effect of the volume
excluded by the solute from the solvent, many-body solute-
solute correlations, and microscopic correlations between the
dipoles of the solvent. All these factors are convoluted into
the k integral,

T,
. X; (k, )
dkj>(kR)So(k, 1p) “——,
. J1(KkR)S( nb)xf«LO)

(18)

HemR) = =1

6R6(0)—lf°°

in which j,(x) is the first-order spherical Bessel function and
R=(0y+0)/2 is the distance of the closest approach of the

021914-4



TERAHERTZ RESPONSE OF DIPOLAR IMPURITIES IN...

solvent molecules with the effective hard-sphere diameter o
to the solute characterized by its hard-sphere diameter oy,

The density-density structure factor Sy(k, 7,) in Eq. (18)
is responsible for a nonlinear dependence of the response
function of the mixture on the solute concentration. The
k=0 value of the structure factor Sy(0, 79) (S(0, 779) — 1 at
70— 0) is the reduced compressibility of the solute compo-
nent of the mixture. It is equal to the experimentally measur-
able osmotic compressibility [32,33],

d
Po ) , (19)

SO(O’ 7]0) Xosm (ﬁ(,BH)
where IT is the osmotic pressure and the derivative is taken
under the condition of osmotic equilibrium.

The transverse dipolar correlation function x/(k,w) in Eq.
(18) does not depend on the solute concentration, but incor-
porates spacial transverse correlations between dipoles in the
polar liquid. We provide its functional form here for com-
pleteness and refer the reader to Refs. [28,34] for a more
detailed account of this problem

X5(0,0)  S"(k) 1 (6(0)-1
Yo ST0) T 1+p ko \ew) -1

1). (20)

In this equation, ST(k) is the static structure factor of trans-
verse dipolar fluctuations. A simple extension of the mean-
spherical solution for dipolar fluids [27] gives ST(k) consis-
tent with numerical simulations [34]. This formalism is used
here for numerical calculations of the function I(w, 77,,R) in
Eq. (18). Finally, the parameter p’ in Eq. (20) quantifies the
relative contribution of translational vs rotational motions of
liquid’s dipoles in the overall response, as discussed in [35].

The approximation of continuous dielectric corresponds
to the neglect of the k dependence in the transverse response
function XST(k,w) in Eq. (18) assuming XST(k,w): XST(O,w).
The dependence on frequency then disappears from the inte-
gral I(w, 175, R) which simplifies to

I(70.R) = (6R/7T)f dkji(kR)So(k, 70). (21)
0

The dielectric-continuum integral I(7,,R) is equal to
unity for an ideal solution when Sy(k,0)=1. This ideal-
solution/continuum limit then results in a simple equation for
the mixture’s dielectric response,

3e(w)
) e(w) +1

ew)-1
2e(w)+1°
(22)

Ax(w)/x(w) =- = yo(w)fy(w)

It shows that the presence of very dilute solute dipoles low-
ers the transverse response because an enhanced depolariza-
tion of the cavity wins over the direct alignment of the solute
dipoles along the external field. It is clear that this result
cannot sustain itself as the concentration of dipolar impuri-
ties grows since the limit of a dielectric constant below unity
can potentially be reached. Solution nonideality must slow
the negative decay of the mixture susceptibility or reverse its
sign to positive.
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The continuum integral I(7,,R) in Eq. (18) can be rewrit-
ten in r space as

I(n,R) =1+ (Po/Qo)f drydr,fo(r)ho(rip) fo(ry), (23)

where h(r},), rj;=r,—r), is the pair correlation function of
the solutes and f,,(r) are Mayer f functions representing hard
cores of the solutes. If long-ranged interactions between the
solutes are neglected, the lowest-order density expansion
of the pair correlation function hy(r;,) yields the third
virial coefficient C;;, of the mixture of hard spheres of di-
ameter R (component 1) and diameter o, (component 2):
I=1-(3py/Qy)Cy1, and Qy=(47/3)R>. The third virial co-
efficient of the hard-sphere mixture is known [36,37]. For
solutes much larger than solvent, one can put R=0,/2 with
the result I(7,)=1-(7,/8)(3+65/24). This simple equation
compares reasonably well with the direct numerical integra-
tion using the Percus-Yevick (PY) expression for the density
structure factor Sy(k, 779). The numerical integrals can be ap-
proximated by a polynomial of R/oq and 7, and this fit is
provided in Appendix for 0= 7,=0.3.

The interactions between hydrated proteins are complex
and Sy(k, 7,) of a hard-sphere fluid might be a useful ap-
proximation only for a limited range of ionic strengths when
Coulomb forces are sufficiently screened [38,39]. The struc-
ture factor Sy(k, 7,) is directly measured by small-angle scat-
tering [39,40] and can be numerically reconstructed from a
linear combination of a repulsive and attractive potentials; a
combination of Yukawa potentials is often used [40]. The
small k part of the structure factor is strongly affected by
long-range interactions, and there is a peak at g,,=2mn,
corresponding to the average distance between the solutes in
solution. Since the amplitude of the peak is typically small
[39], a general insight into how correlations between hy-
drated proteins affect the dielectric response can be gained
from an empirical approximation for Sy(k, 7). The following
approximation (analogous to the empty core model [41]) fol-
lows directly from the low-density expansion of the direct
correlation function of a hard sphere,

So(k, m0) =[1 + a( ) j1(koy)/(kap)]™, (24)

in which the constant a(7,) is chosen to reproduce the
osmotic compressibility a(7,)=3(S,(0,7,)~'=1). The re-
sulting integral I(7,,R) in Eq. (21) is a function of a only
(R=0y/2). Tts numerical value can be approximated
by a Padé form, I(a)=(1+0.090 830 8a—0.002 265 674>)/
(1+0.131 266a—-0.004 340 23a?), which allows one to use
the osmotic compressibility, affected by both repulsions and
attractions, as input to obtain the dielectric response. The
approximation of Eq. (24) is accurate up to 7,=0.1 when
compared to the direct integration with the PY density struc-
ture factor.

It is worth noting at this point that the continuum approxi-
mation is inaccurate at low frequencies w=0 overestimating
the cavity polarization in the entire range of solute sizes of
common interest (Fig. 2). This happens because of a very
sharp decay of the structure factor S7(k) at small k values
[34] which, in the continuum limit, is replaced by its k=0
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FIG. 2. I(w, 79,R) calculated at @=0 and w=1 THz as indi-
cated in the plot vs the reduced distance of closest solvent approach
to the solute R/o=(0y/0+1)/2. The dashed line is the dielectric-
continuum result of Eq. (21); 7,=0.1 and the solvent parameters are
those of water (see Appendix).

value S7(0). The continuum approximation becomes more
accurate as the frequency increases and the dielectric con-
stant drops (Fig. 2), but it needs to be tested before applied in
a frequency range of interest. Nevertheless, in the range of
THz frequencies, the continuum limit [Eq. (21)] presents a
useful simplification of Eq. (18), which, in conjunction with
Eq. (24), yields the dielectric response solely in terms of
observable quantities.

The actual dependence of the dielectric response on the
solute volume fraction is more complex than a nearly linear
decay suggested by Eq. (22). It is shown in Fig. 3 where a
static w=0 response is calculated for parameters specific to
N\s5_gs protein discussed below. Baxter’s solution of the PY
closure [26] for Sy(k, 7,) was used in these calculations. In
addition, the microscopic transverse response function of the
solvent dipoles was taken according to Ref. [28], and the
static dipolar structure factor was calculated from a corrected
mean-spherical approximation suggested in Ref. [34]. The
dependence of the dielectric response on 7, is curved down,
thus eliminating the dielectric catastrophe following from the
linear extrapolation of Eq. (22). However, the shape of the
concentration dependence varies with the frequency, and the
curvature is just the opposite one for the THz response (see
below).

A notion regarding theory’s approximations is relevant
here. One might argue that the point-dipole model is too

0 , , :

N
N 7\.

~ 6-85

0.1+ N A

Ac(0)/0(0)

‘ ‘
0 0.05 0.1 0.15 02
My

FIG. 3. Relative change in the absorption coefficient of the mix-
ture at =0 [see Egs. (26) and (27)] as a function of the volume
fraction of the solute 7,. The solid line refers to the entire response
function from Eq. (17), while the dashed line shows the contribu-
tion of the first term only. The latter, linear in 7, is the limit of zero
solute dipole. The overall nonlinear dependence on 7, is the result
of mutual polarization of the cavities by the solute dipoles. The
solute size and dipole are those of the Ag_gs5 protein.
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restrictive for the electrostatic field of a protein with a typi-
cally nonzero overall charge and the prevalence of charged
residues on its surface. We believe that the approximations
adopted here are adequate and the theory might actually be
more quantitative than it seems. First, the solvent response
function is independent of the solute charge in the linear
response approximation [34] and is identical to the one ob-
tained for a fictitious solute with all charges turned off. The
linear response approximation might obviously fail, and that
certainly puts a restriction on the current theory. Second, the
perturbation Hamiltonian for the current problem is the in-
teraction of the sample dipole moment with the external elec-
tric field of the radiation. Since the THz wavelength obvi-
ously exceeds any molecular or nanoscale dimension, the
dipolar approximation is appropriate. Finally, the total solute
charge can contribute to conductivity [42] that is normally
subtracted from the dielectric response and is insignificant in
the THz frequency range. The dipole moment of a charged
solute is then defined relative to the solute’s center of mass
[42].

IV. COMPARISON TO EXPERIMENT

One of the parameters reported in THz dielectric measure-
ments is the relative absorption coefficient Aa(w)/ a(w),
where Aa(w) = ap(w)— al(w) is the change in the absorption
coefficient of the mixture relative to the pure liquid. The
absorption coefficient is defined [43,44] as the ratio of the

rate of energy dissipation by the medium (&), over the Poyn-
ting vector S(w) of the incident radiation,

(o
S(w)

a(w) = (25)
By combining the standard equations for the Poynting vector
in dielectric media [20,44] with energy dissipation in terms
of the dielectric response function y(w) one gets the equation

a(w) = dme }/,(—w), (26)
¢ Ve'(w)

which can be applied either to the mixture or to the pure
liquid (c is the speed of light in vacuum).

Assuming that the deviation of the response Ax(w)
caused by impurities is small compared to the dielectric re-
sponse of the pure liquid, one can easily derive an expression
for the relative change of the absorption coefficient,

Ac(w) 47AY" () ~ 27mAY (w)
€'(w) €' (o)

In this equation, the variations in both the imaginary and the
real parts of the response are taken into account when impu-
rities are introduced into the polar liquid. In particular, for
solutes with small dipole moment, one can drop the term
proportional to yy(w) in Eq. (17) and arrive at a simple rela-
tion

(27)

alw)

Aa(w) O{f”(w) f’(w)]’ 08)

€(w) 26 (w)
where f(w) is given by Eq. (15).

@)
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FIG. 4. Aa(w)/ a(w) at w=2.5 THz calculated from Eq. (28)
(solid line) and measured experimentally [16] (points) for the aque-
ous solution of trehalose. The dashed and dash-dotted lines repre-
sent, correspondingly, contributions from the first and second terms
in Eq. (28) such that the solid line is their difference. The
frequency-dependent dielectric constant of water in the THz range
of frequencies was taken from Ref. [45] and the molecular volume
of trehalose ()(=278 A3 [46] was used to convert from experimen-
tally reported molar concentrations to volume fractions (see Appen-
dix for the details of calculations).

Figure 4 shows the comparison of Eq. (28) (lines) with
the experimental absorption coefficients (points) of trehalose
dissolved in liquid water [16]. The details of the calculations
and the parameters used to produce the plot are given in the
Appendix. Because of the small dipole moment of trehalose,
a complete calculation of the dielectric response function of
the mixture is not required [the term proportional to yy(w) in
Eq. (17) is small] and Eq. (28) is sufficient. The dashed and
dash-dotted lines in Fig. 4 show the first (imaginary part) and
second (real part) terms in Eq. (28). It is clear that changes in
the imaginary and real parts of the dielectric susceptibility
upon the addition of impurities are comparable in magnitude
and should both be included. The only solute parameter en-
tering Eq. (28) is its volume. Equation (28) can therefore be
used to determine molecular volumes of weakly polar solutes
by means of dielectric measurements.

In an attempt to see what might be the theory prediction
for the case of protein solutions we have mimicked the con-
ditions reported in Ref. [17] where the absorbance of the
solution of a five helix bundle protein \g_gs [47] showed a
maximum at the volume fraction of protein below 1% (points
in Fig. 5). The calculations (see Appendix for the parameters
used) show almost no effect of proteins’ dipoles and a nega-
tive contribution to the absorption, as in the case of trehalose
above and in an obvious disagreement with the experiment.

There is also a clear difference between Figs. 3 and 5.
While Fig. 3 shows a clear effect of the mutual cavity polar-
ization by solutes’ dipolar fields for the same set of param-
eters, there is almost no effect of the solute dipolar compo-
nent in Fig. 5 (cf. solid and dashed lines). The difference
comes from the dynamical effect. The solute dipoles do not
have time to reorient on the time scale of the THz pulse and
the corresponding contribution is strongly diminished by the
relaxation 1/(w7y) term. The THz pulse in this calculation
couples almost exclusively to electronic polarizabilities of
the hydrated proteins.

For the solute dipoles to be seen in the THz response,
either a much faster relaxation or significantly larger effec-
tive dipoles are required. Faster relaxation of the protein di-
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Ao(m)/o(w)
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FIG. 5. Relative change in the absorption coefficient at 2.25
THz mimicking the solution of protein A\¢ g5 studied by THz spec-
troscopy in Ref. [17]. The solid line is the dielectric response cal-
culated from Eq. (17) with my=61 D (ggyK=2/ 3)and the effective
radius of 12.1 A and the points are experimental measurements
[17]. The dashed line refers to the first term in Eq. (17) representing
the polarization of the solute cavities by the external electric field.

pole seems improbable given that numerical simulations
show an almost exclusively single-component rotational re-
laxation with the relaxation time in the range of 3—6 ns [42].
The hydration shell thus emerges as the most probable can-
didate to explain the differences between the theory and ex-
periment.

In order to obtain more quantitative insights into the prob-
lem, results of numerical simulations of protein solutions are
required. We found recently [18,19] that, in accord with sug-
gested interpretation of experimental THz data [17], proteins
are capable of polarizing their hydration shells =10—15 A
into the bulk water. This polarization results in a significant
nonzero average dipole moment of the hydration shell
(Im,,|), which reached the value of =10* D in simulations of
metalloprotein plastocyanin [18]. The dynamics of this ferro-
electric cluster around the protein are however decoupled
from a much slower tumbling of the protein occurring on the
time-scale of nanoseconds. The relaxation of the shell’s di-
pole m,, is clearly two component. A very fast initial decay,
on a subpicosecond time scale, accounts for more than 80%
of the relaxation amplitude at 300 K. This fast relaxation
correlates with low-frequency vibrations of the protein de-
forming water’s “elastic ferroelectric bag” [19]. The fast
component is followed by a low-amplitude tail lasting hun-
dreds of picoseconds. This relaxation component further
slows down, but grows in amplitude, with lowering tempera-
ture [19].

In the picture of a protein enveloped by the ferroelectric
bag of solvation shells the solute dipole m, should be re-
placed by the sum of protein’s and shell’s dipoles
M=m,+m,, The dynamics of this total dipole provide input
to determine function ®(w), which, together with (M?),
yields yo(w) [Eq. (16)]. These parameters were extracted
from simulations of plastocyanin carrying the negative
charge of -8 in its oxidized state and hydrated by
N,,=21 076 TIP3P waters [18,19]. The shell of water mol-
ecules of width 20 A was added to the effective radius of the
protein to obtain the effective radius of the protein/water
cluster and the volume fraction of coupled protein/water di-
poles in solution (see Appendix for details). The dielectric
response of the solution was then calculated from Egs. (17)
and (26).
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Aol m)/ o)

FIG. 6. Change in the absorption coefficient of solution of plas-
tocyanin relative to the bulk water at 2.25 THz. Dipole correlation
function of the protein with the surrounding water shell was taken
from MD simulations [19]. The solute volume fraction 7, was cal-
culated by adding the width of the hydration shell (20 A) to the
radius of plastocyanin (16.8 A). The points represent the experi-
mental results for Ag_gs protein [17] recalculated from experimental
molar concentrations by using the combined volume of plastocya-
nin and its polarized water shell. The solid curve refers to the cal-
culations done with the hard-sphere solute-solute structure factor in
Eq. (18). In order to show the sensitivity of the results to the solute-
solute correlations, the dashed line represents the continuum inte-
gral I(7y)=1-31, with the slope against 7, much exceeding that
for hard-sphere solutes (long-range repulsions). The inset shows the
change in dielectric loss of the plastocyanin solution at 7,=0.05
relative to the bulk water against frequency measured in 10'> s,

Figure 6 shows the concentration dependence of the solu-
tion absorption coefficient with the PY hard-sphere structure
factor Sy(k, 77,) (solid line). The points, shown for the refer-
ence, are data for N¢_gs protein [17] rescaled with the volume
of the plastocyanin/water cluster. The calculation indeed
yields a maximum in the absorption coefficient which turns
to negative values with increasing volume fraction. The out-
come of these calculations is sensitive to the form of the
density structure factor and, therefore, to protein-protein in-
teractions in solution. In order to illustrate this point, the
dashed line in Fig. 6 shows the result of calculations with a
stronger effect of protein repulsions and thus a steeper decay
of Sy(0, 70) with increasing 7.

The hard-sphere model might not be adequate for all pro-
teins and electrolyte concentrations. For instance, for the
ionic strength employed in Ref. [17] (0.05 M), the interac-
tions between hydrated bovine serum albumin (BSA) pro-
teins are dominated by electrostatic repulsions [48]. These
proteins are negatively charged, similarly to plastocyanin,
and the long-range interactions are dominated by the
screened Coulomb potential. The osmotic compressibility
Xosm=30(0, 770) of BSA quickly drops with increasing protein
concentration to the level Sy(0, 7)) =0.1-0.2 and then does
not change significantly when the protein concentration is
further increased [48]. With such a dependence of Sy(0, )
on the volume fraction 7, the peak in absorption vanishes
(Fig. 6). Note that no absorption peak against protein con-
centration was detected for BSA in dielectric terahertz mea-
surements at w=1.56 THz [11].

The inset in Fig. 6 shows the frequency dependence of the
dielectric loss A€”’(w). As is seen, the change in the loss
relative to bulk water can be either positive or negative, de-
pending on the frequency range. A complex concentration
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Ao w)/ou(w)

FIG. 7. Change in the absorption coefficient of solution of A\¢_gs
protein at 2.25 THz relative to the bulk water. The normalized di-
pole correlation function of the protein with the surrounding water
shell ®(w) was taken from MD simulations of plastocyanin metal-
loprotein [19]. The density structure factor of the proteins was con-
structed from the hard-sphere and Yukawa effective potential [Eq.
(29)] obtained in Ref. [49] by fitting small-angle scattering data.
The curves refer to different dipole moments (in D) of the protein-
water cluster as indicated in the plot. The cluster dipoles were as-
sumed uncorrelated, gIT<=2/3. The points are the experimental re-
sults from Ref. [17] converted to volume fraction with the hard-
sphere diameter ¢,=37.8 A from the effective protein-protein
interaction potential [49]. The inset shows the density structure fac-
tors (vs ko) of the Yukawa potential (solid line) and the hard-sphere
PY potential (dashed line) at 7=0.1.

dependence seen for the absorption coefficient in Fig. 6 is the
cumulative effect of the concentration dependencies of both
€ (w) and € (o).

The A¢_gs protein, used to produce Fig. 5, is uncharged.
The corresponding protein-protein interaction can be mod-
eled either as a sum of soft repulsion and exponentially de-
caying attraction or, alternatively, as a sum of hard-sphere

(uys) and attractive Yukawa potentials [49],
u(r) = ups(r) - G(O'O/r)e_(’_”())/'sﬁ(r - 0y). (29)

In Fig. 7 we used this latter approximation for the interaction
potential to calculate Sy(k,7,) [50] and then applied this
structure factor to the calculation of the THz absorption co-
efficient. In the absence of dipole moment dynamics for this
protein, we used the normalized self-correlation function of
the protein-water dipole from plastocyanin simulations
[18,19]. A set of curves in Fig. 7 refer to different values of
the dipole moment of the protein-water cluster, with the low-
est curve corresponding to the protein dipole alone (zero
shell dipole). Qualitatively, the absorption curves do go
through maxima with increasing dipole of the solute and the
protein solution absorbs stronger than bulk water. However,
the maxima are broader than in experiment and the agree-
ment is only qualitative at best.

The discrepancy between theory and experiment cannot
be mended by incremental adjustments to the Yukawa poten-
tial in Eq. (29) since the corresponding structure factor is in
fact fairly close to that of the PY hard-sphere fluid (inset in
Fig. 7). The emergence of the polarization shell around a
protein should result in a soft repulsion between hydrated
proteins when two shells start to penetrate each other. This
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physics is not adequately accommodated by the hard-core
repulsion in Eq. (29). A ramp repulsion potential of Jagla
type [51] might be a better choice to represent protein spatial
correlations in solution. A direct input of (M?) and ®(-w)
from numerical simulations for the experimentally studied
system is also required for a critical test of the theory per-
formance.

V. DISCUSSION

The present model of the dielectric response targets physi-
cal situations when large solutes dissolved in polar solvents
do not extend to dimensions of a dielectric material. Large
cavities in polar liquids carry depolarization dipoles oriented
oppositely to the external field, with their magnitudes scaling
linearly with the solute volume. These depolarization dipoles
accumulate a negative contribution to the absorption coeffi-
cient. The intrinsic solute dipoles, which align along the ex-
ternal electric field, increase the absorption and also produce
a nonzero local electric field that repolarizes neighboring
cavities. This collective effect, nonlinear in the solute con-
centration, is sensitive to the solute-solute correlations and is
described by convoluting the solvent dipolar response with
the density structure factor of the dissolved solutes.

This model performs exceptionally well when tested
against experimental THz measurements for weakly polar
impurities (Fig. 4). In this case, only depolarization of cavi-
ties contributes to the response and that part of the problem
seems to be well captured by dielectric theories. Even though
solvation of saccharides distorts the structure of water on the
microscopic scale [52,53] and slows down the dynamics of
the hydration layer [54], THz absorption seems to be insen-
sitive to such changes and the resulting signal is well de-
scribed by a purely dielectric response. This conclusion is
consistent with the recent light scattering spectra of trehalose
solutions [54] suggesting only a local perturbation of the
water structure restricted to the first solvation shell, which is
typical for many small molecular solutes.

Polar impurities introduce both the effect of individual
solute dipoles and their collective polarization effect. The
response function formalism employed here does not involve
any large-scale changes in the solvent structure induced by
the solute. This formulation then fails to reproduce the
anomalous increase in the absorption of protein solutions
over that of bulk water [10,17]. Computer simulations [18]
show instead a high extent of cooperativity between hydra-
tion shells and protein’s vibrations. In addition, a significant
polarization of the water shell extending 10-20 A from the
protein surface into the bulk is observed. When the magni-
tude and correlation function of the protein-water total dipole
are substituted into the equations for the solution response,
the theory shows a maximum in the absorption coefficient
qualitatively similar to experimental observations. The maxi-
mum can therefore be considered as an observable signature
of the “elastic ferroelectric bag” found by simulations [18].
The shape of this anomalous absorption maximum is how-
ever sensitive to the interprotein interaction potential and
will be affected by several factors including protein’s ioniza-
tion state and the ionic strength of the solution. All these
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factors are accumulated in the protein-protein density struc-
ture factor available from small-angle scattering measure-
ments. The combination of scattering and THz dielectric data
then allows a direct access to the dipole moment dynamics of
the protein/water interface, which can be extracted from ex-
periment by using the current model.
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APPENDIX: DETAILS OF CALCULATIONS

The dependence of the absorption coefficient on fre-
quency arises predominantly from the frequency-dependent
dielectric constant of the solvent. Dielectric measurements of
water [45] in the THz range, extended to more typical low-
frequency dielectric values, have been used to produce Figs.
2 and 4-7. The dielectric constant is given by the following
relation [45]:

AE2 A S

Ae

1

fw)="—""—+-"—""—+ :
l-iowr, 1-iown w?—wz—lw%

+ €.,

(A1)

where A€ =739, Ae,=1.56, and €,.=2.34. The Debye
relaxation times and the parameters of the resonant
component are 7,=8.76 ps, 7,=0.224 ps, w,/27=5.3 THz,
¥,/2m=5.30 THz, and Ag/(2m)>=35.1 THZ’.

The parameter f,;(w) [Eq. (9)] accounts for the difference
between the external and the local directing (torque) fields. It
depends on frequency through the dielectric constant. This
parameter is often associated with the field within an empty
cavity in a liquid [21]. An expression recently derived by us
for this property [31] was used in the calculations:
fw)={T[e(w)+1*+8e(w)}/{12e(w)[2€(w)+ 17}

Since the polarizability of many organic substances is
close to ao,e=a%/ 16, the parameter of dipolar density of the
solutes [Eq. (16)] was taken in the form

1 .
yo(w) = {5 +4g0 x(mp) 1 - iw®(- w)]} 7, (A2)
where (m)?=B(M?)/a; is the reduced effective dipole; M
can be either the protein dipole or the entire dipole moment
of the protein-water cluster.

Simulations of hydrated plastocyanin were reported pre-
viously [18]. The presently used data [19] represent the same
simulation protocol applied to the oxidized (total charge of
—8) state of plastocyanin extended to a larger number of
waters in the simulation box, N,,=21 076. For plastocyanin
calculations M represents the total dipole of the protein and
water shell extending =20 A from the protein surface into
the bulk. This latter magnitude was added to the effective
radius of the protein listed in Table I to obtain the effective
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TABLE 1. Solute parameters used in the calculations.

(09/2) my o
Solute (A) (D) (ns)
Trehalose 8.2 1.75 0.05
N6 g5 12.1° 61° 3
Plastocyanin® 16.84 248° 2.8

From [17]. The following set of parameters from [49] was used to
represent the protein-protein interaction potential in Eq. (29): oy
=318 A, e/kg=419 K, and 6=4.14 A.

®Calculated from equilibrated protein geometry and atomic partial
charges [55].

“According to molecular dynamics (MD) simulation data from Ref.
[18].

From the vdW volume of the protein using the AMBER FF03 force
field.

“(my) calculated from the MD trajectory relative the center of mass,
total charge of the Ox state of the protein is —8. Fluctuations of the
protein dipole are caused by protein’s vibrations.

'Calculated from the exponential fit of the time self-correlation
function of the protein dipole.

radius of the water/protein cluster. The average squared
protein/water dipole calculated from the simulation trajec-
tory is (M?)=1.44X10% D?. The response function ®(w)
was obtained as a Laplace-Fourier transform of the three-
exponent fit of the simulated correlation function,

3
D(1) =2 A, (A3)
i=1

where A;={0.84,0.11,0.05} and 7;={0.14,1790,6.3} ps.
Other solute parameters used in the calculations are listed
in Table I. The hard-sphere diameter of water was taken at
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the value of 0=2.87 A and the inertial parameter p’ in Eq.
(20) was set at the value of p’=0.1 [28]. The rotational re-
laxation times of the solutes were taken at 7,=50 ps for
trehalose and 7y=3 ns for the two proteins. The former
number is consistent with the second relaxation process ex-
tracted from the dielectric response and simulations of hy-
drated saccharides [52], while the latter is typical for rota-
tional dynamics of proteins [42].

The calculation of the solute dipole component of the di-
electric response simplifies in the continuum limit when the
integral in Eq. (18) loses the dependence on frequency and
reduces to Eq. (21). This integral depends on two parameters,
the volume fraction 7, and the reduced geometry parameter
r=1/2+0/(20y), when the hard-spheres approximation is
used for the density structure factor Sy(k,7,). The range
0.5=r=1 covers most problems of interest. Numerical inte-
gration of Eq. (21) with the PY density structure factor [26]
was done in this range of r-values and volume fractions in
the range 0= 7,=0.3. The numerical results were interpo-
lated with the polynomial function

1(n0,7) = a(mo) + b(mo)r* + c(mo)r* + d(p)r®,  (A4)
where
a(mo) = 1 +0.2257, + 7.7267; — 13.8057;,
b(10) == 9.694 7, — 18.572 75 + 16.642 773,
c(70) = 6.987 730+ 38.913 73 — 5.940 773,
d(m0) =2.108 7y — 16.57075 — 10.007 ;. (A5)

The expansion in even powers of r in Eq. (A4) is dictated by
the symmetry of the density structure factor [26] and the
density expansion of the polynomial coefficients has been
chosen to justify the ideal-solution limit 7(0,r)=1.
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